A Genetic Based Neuro-Fuzzy Controller for Thermal Processes
نویسندگان
چکیده
This paper presents a neuro-fuzzy network where all its parameters can be tuned simultaneously using Genetic Algorithms. The approach combines the merits of fuzzy logic theory, neural networks and genetic algorithms. The proposed neuro-fuzzy network does not require a priori knowledge about the system and eliminates the need for complicated design steps like manual tuning of input-output membership functions, and selection of fuzzy rule base. Although, only conventional genetic algorithms have been used, convergence results are very encouraging. A well known numerical example derived from literature is used to evaluate and compare the performance of the network with other modelling approaches. The network is further implemented as controller for two simulated thermal processes and their performances are compared with other existing controllers. Simulation results show that the proposed neuro-fuzzy controller whose all parameters have been tuned simultaneously using GAs, offers advantages over existing controllers and has improved performance.
منابع مشابه
Adaptive Neuro Fuzzy Sliding Mode Based Genetic Algorithm Control System to Control of a pH Neutralization Process
In this paper, an adaptive neuro fuzzy sliding mode based genetic algorithm (ANFSGA) controlsystem is proposed for a pH neutralization system. In pH reactors, determination and control of pH isa common problem concerning chemical-based industrial processes due to the non-linearity observedin the titration curve. An ANFSGA control system is designed to overcome the complexity of precisecontrol o...
متن کاملHybrid GA Tuned RBF Based Neuro-Fuzzy Controller for Robotic Manipulator
In this paper performance of Puma 560 manipulator is being compared for hybrid gradient descent and least square method learning based ANFIS controller with hybrid Genetic Algorithm and Generalized Pattern Search tuned radial basis function based Neuro-Fuzzy controller. ANFIS which is based on Takagi Sugeno type Fuzzy controller needs prior knowledge of rule base while in radial basis function ...
متن کاملDesign and Simulation of Adaptive Neuro Fuzzy Inference Based Controller for Chaotic Lorenz System
Chaos is a nonlinear behavior that shows chaotic and irregular responses to internal and external stimuli in dynamic systems. This behavior usually appears in systems that are highly sensitive to initial condition. In these systems, stabilization is a highly considerable tool for eliminating aberrant behaviors. In this paper, the problem of stabilization and tracking the chaos are investigated....
متن کاملA Genetic based Neuro-Fuzzy Controller System
Recently, the mobile robots have great importance in the manufacturing processes. They are widely used for assembling processes, handling the dangerous components, moving the weighted things, etc. Designing the controller of the mobile robot is a very complex task. Many simple control systems used the neuro-fuzzy controller in the mobile robots. But, they faced with great complexity when moving...
متن کاملNeuro-fuzzy Sliding Mode Controller Based on a Brushless Doubly Fed Induction Generator
The combination of neural networks and fuzzy controllers is considered as the most efficient approach for different functions approximation, and indicates their ability to control nonlinear dynamical systems. This paper presents a hybrid control strategy called Neuro-Fuzzy Sliding Mode Control (NFSMC) based on the Brushless Doubly fed Induction Generator (BDFIG). This replaces the sliding surfa...
متن کامل